lunes, 4 de junio de 2012

INVENTOS TECONOLIGOS

1-El grafeno.
Este material derivado del grafito es barato, flexible, transparente y de gran conductividad. Sus descubridores se alzaron este año con el Nobel de Física. Puede ser empleado para pantallas táctiles, celulares y paneles solares. Esta forma de carbono puro de una sola capa atómica, revolucionó la electrónica, la informática y las comunicaciones y era difícil de replicar industrialmente. Pero gracias a una depuración de la Universidad Sungkyunkwan, en Corea del Sur, será producido a gran escala el próximo año.
PARTICIPANTES:Rahul Raveendran-Nair, Kostya Novoselov y Andre Geim
http://news.softpedia.es/Los-inventores-de-grafeno-desarrollan-el-fluorografeno-164804.html

















 Implantes cibernéticos.
La nueva generación de dispositivos médicos implantables se basará en materiales ópticos y electrónicos. Actuarán monitoreando signos vitales y almacenarán datos para agregar al historial médico del paciente.
PARTICIPANTES:Raymond Kurzweil
http://es.wikipedia.org/wiki/Raymond_Kurzweil
















3-Robots enfermeras.
Esta unidad de videoconferencia móvil ingresará a la habitación de los pacientes para realizar diferentes procedimientos de rutina (tomar la presión o la fiebre, entregar medicación) e interactuar con los pacientes.
PARTICIPANTES: Hiroshi Ishiguro
http://www.taringa.net/posts/noticias/8286299/Robot-Enfermera-en-japon_.html




4-Vehículos inteligentes.
Cada vez habrá más autos con Internet, para conocer el estado de las rutas, escoger un camino alternativo y disfrutar de diferentes contenidos digitales como enormes archivos online de música y videos.


5-Celulares 3D.
La percepción de profundidad es obra de Julien Flack, director de tecnología de Dynamic Digital Depth, quien a través de un software sintetiza escenas en 3D, estimando la profundidad de los objetos. No requiere gafas.









http://www.taringa.net/posts/ciencia-educacion/12962851/Los-diez-avances-tecnologicos-que-surgiran-en-el-2012.html

lunes, 28 de mayo de 2012

Ciclos Biogeoquimicos

Se denomina ciclo biogeoquímico al movimiento de cantidades masivas de carbono, nitrógeno, oxígeno, hidrógeno, calcio, sodio, azufre, fósforo, potasio, y otros elementos entre los seres vivos y el ambiente (atmósfera, biomasa y sistemas acuáticos) mediante una serie de procesos de producción y descomposición. En la biosfera la materia es limitada de manera que su reciclaje es un punto clave en el mantenimiento de la vida en la Tierra; de otro modo, los nutrientes se agotarían y la vida desaparecería

Un elemento químico o molécula necesario para la vida de un organismo, se llama nutriente o nutrimento. Los organismos vivos necesitan de 31 a 40 elementos químicos, donde el número y tipos de estos elementos varía en cada especie. Los elementos requeridos por los organismos en grandes cantidades se denominan:
  1. Macronutrientes: carbono, oxígeno, hidrógeno, nitrógeno, fósforo, azufre, calcio, magnesio y potasio. Estos elementos y sus compuestos constituyen el 97% de la masa del cuerpo humano, y más de 95% de la masa de todos los organismos.
  2. Micronutrientes. Son los 30 ó más elementos requeridos en cantidades pequeñas (hasta trazas): hierro, cobre, zinc, cloro, yodo, (véase también oligoelementos).
La mayor parte de las sustancias químicas de la tierra no están en formas útiles para los organismos. Pero, los elementos y sus compuestos necesarios como nutrientes, son reciclados continuamente en formas complejas a través de las partes vivas y no vivas de la biosfera, y convertidas en formas útiles por una combinación de procesos biológicos, geológicos y químicos.
El ciclo de los nutrientes desde el biotopo (en la atmósfera, la hidrosfera y la corteza de la tierra) hasta la biota, y viceversa, tiene lugar en los ciclos biogeoquímicos (de bio: vida, geo: en la tierra), ciclos, activados directa o indirectamente por la energía solar, incluyen los del carbono, oxígeno, nitrógeno, fósforo, azufre y del agua (hidrológico). Así, una sustancia química puede ser parte de un organismo en un momento y parte del ambiente del organismo en otro momento. Por ejemplo, una molécula de agua ingresada a un vegetal puede ser la misma que pasó por el organismo de un dinosaurio hace millones de años.
Gracias a los ciclos biogeoquímicos, los elementos se encuentran disponibles para ser usados una y otra vez por otros organismos; sin estos ciclos los seres vivos se extinguirían por esto son muy importantes.
El término ciclo biogeoquímico se deriva del movimiento cíclico de los elementos que forman los organismos biológicos (bio) y el ambiente geológico (geo) e intervienen en un cambio químico.
Hay tres tipos de ciclos biogeoquímicos, que están interconectados:
  • Gaseoso. En el ciclo gaseoso, los nutrientes circulan principalmente entre la atmósfera y los organismos vivos. En la mayoría de estos ciclos los elementos son reciclados rápidamente, con frecuencia en horas o días. Los principales ciclos gaseosos son los del carbono, oxígeno y nitrógeno.
  • Sedimentario. También se estudian los ciclos biogeoquímicos de los contaminantes.
  • Hidrológico. Proceso de circulación del agua entre los distintos compartimentos de la hidrósfera. Se trata de un ciclo biogeoquímico en el que hay una intervención mínima de reacciones químicas, y el agua solamente se traslada de unos lugares a otros o cambia de estado físico.
REFERENCIAS:

Malformaciones Geneticas

Malformacion Cogneticason alteraciones anatómicas que ocurren en la etapa intrauterina y que pueden ser alteraciones de órganos, extremidades o sistemas, debido a factores medioambientales, genéticos, deficiencias en la captación de nutrientes, o buen consumo de sustancias nocivas. Estas alteraciones estructurales pueden afectar tanto a seres vivíparos y ovíparos.
En el caso del ser humano, existen estadísticas que revelan que es un problema de alta frecuencia, del orden de 1,2 casos por cada 100 nacimientos.[1] Un alto porcentaje de los nacimientos con malformaciones congénitas fallecen al momento de nacer o durante el primer año de vida. Aquellos que logran sobrevivir y dependiendo del tipo de malformación, quedan expuestos a una mala calidad de vida, tratamientos costosos y/o sometidos a una serie de cirugías correctivas.
Las alteraciones por razones medioambientales pueden ocurrir con una mayor suceptibilidad durante el crítico período de la organogénesis, en las primeras 12 semanas de gestación, en la fase embrionaria, cuando la madre han estado expuesta al consumo de sustancias como alcohol, tabaco, adicción a drogas[2] o exposición teratogénica a sustancias nocivas ( como alquilos o arilos organonitrados o clorados, herbicidas, pesticidas en forma de aerosol). También puede originarse en la carencia de nutrientes como algunas vitaminas esenciales para la gestación, como puede ser el ácido fólico
Algunas malformaciones comunes


  • Acalacia esofágica
  • Atresia duodenal
  • Deformaciones encefálicas
  • Divertículo de Meckel
  • Espina bífida
  • Estenosis esofágica
  • Fisura palatina
  • Labio leporino
  • Mielomeningocele
  • Quiste broncogénico
  • Quiste del colédoco
  • Síndrome de la Sirena



  • Testículo ectópico.
  • REFERENCIAS:

    domingo, 27 de mayo de 2012

    Dinosaurios

    Los dinosaurios son un clados de vertebrados saurópsidos que dominaron los ecosistemas terrestres del Mesozoico durante unos 160 millones de años, alcanzando una gran diversidad y, algunos, tamaños gigantescos. Tal como lo exige el uso de la nomenclatura científica, al clado de los dinosaurios, como a cualquier clado, corresponde un nombre en latín iniciado en mayúscula. Este nombre es Dinosauria Una de las principales características de los dinosaurios es la propiedad de tener las patas situadas en posición vertical por debajo del cuerpo, como los mamíferos, y no hacia los costados, como la mayor parte de los reptiles. Los dinosaurios eran reptiles originariamente bípedos, aunque el cuadrupedismo resurgió en varios grupos distintos. Durante los últimos años se han acumulado pruebas científicas muy contundentes de que pequeños dinosaurios carnívoros dieron origen a las aves durante el periodo Jurásico. De ahí que, actualmente, las aves estén clasificadas dentro del taxón Dinosauria. Se confunde frecuentemente a los dinosaurios con otros tipos de reptiles antiguos, como los alados pterosaurios, los terápsidos pelicosaurios y los acuáticos ictiosaurios, plesiosaurios y mosasaurios, aunque ninguno de estos era realmente un dinosaurio.
    Dinosauria constituye un superorden de la clase de los saurópsidos. Se considera que forman un taxón monofilético por presentar una serie de claras sinapomorfias que los unen, como el fémur articulado con la pelvis por medio de un cóndilo dispuesto en ángulo respecto de aquél, y un hueco en la pelvis.
    Los dinosaurios se clasifican tradicionalmente en dos grupos según la estructura de su cadera, los saurisquios y los ornitisquios.

    Los dinosaurios surgieron hace aproximadamente 230 millones de años, en el período Triásico, unos 20 millones después de que la extinción masiva del Pérmico-Triásico hiciera desaparecer un 95 por ciento de toda la vida en la Tierra.[24] [25] Dataciones radiométricas de fósiles de la especie temprana de dinosaurio Eoraptor revelan su existencia en este momento. La mayoría de los paleontólogos cree que Eoraptor se parece al ancestro común de todos los dinosaurios.[26] De ser esto cierto, los primeros de estos animales habrían sido pequeños predadores bípedos.[27]

    REFERENCIAS:
    Dinosaurios: Características y evolución. [1]
    Evans, J. Ultimate Visual Dictionary - 1998 Edition. Dorling Kindersley Books. 66-69. ISBN 1871854008. (1998).

    Ecologia

    es la ciencia que estudia a los seres vivos, su ambiente, la distribución, abundancia y cómo esas propiedades son afectadas por la interacción entre los organismos y su ambiente: «la biología de los ecosistemas» (Margalef, 1998, p. 2). En el ambiente se incluyen las propiedades físicas que pueden ser descritas como la suma de factores abióticos locales, como el clima y la geología, y los demás organismos que comparten ese hábitat (factores bióticos).
    La visión integradora de la ecología plantea que es el estudio científico de los procesos que influyen la distribución y abundancia de los organismos, así como las interacciones entre los organismos y la transformación de los flujos de energía y materia[1]

    La ecología es la rama de la Biología que estudia las interacciones de los seres vivos con su hábitat. Esto incluye factores abióticos, esto es, condiciones ambientales tales como: climatológicas, edáficas, etc.; pero también incluye factores bióticos, esto es, condiciones derivadas de las relaciones que se establecen con otros seres vivos. Mientras que otras ramas se ocupan de niveles de organización inferiores (desde la bioquímica y la biología molecular pasando por la biología celular, la histología y la fisiología hasta la sistemática), la ecología se ocupa del nivel superior a éstas, ocupándose de las poblaciones, las comunidades, los ecosistemas y la biosfera. Por esta razón, y por ocuparse de las interacciones entre los individuos y su ambiente, la ecología es una ciencia multidisciplinaria que utiliza herramientas de otras ramas de la ciencia, especialmente Geología, Meteorología, Geografía, Física, Química y Matemática.

    Referencias:
    1. Pickett, Kolasa y Jones, 1994 http://www.ecostudies.org/definition_ecology.html)
    2. Hughes, D. P.; Pierce, N. E.; Boomsma, J. J. (2008). «Social insect symbionts: evolution in homeostatic fortresses». Trends in Ecology & Evolution 23 (12): pp. 672–677. doi:10.1016/j.tree.2008.07.011. PMID 18951653. http://www.csub.edu/~psmith3/Teaching/discussion3C.pdf.

    Evolucion de la vida

    Es el conjunto de transformaciones o cambios a través del tiempo que ha originado la diversidad de formas de vida que existen sobre la Tierra a partir de un antepasado común.[1] [2] La palabra evolución para describir tales cambios fue aplicada por vez primera en el siglo XVIII por el biólogo suizo Charles Bonnet en su obra Consideration sur les corps organisés.[3] [4] No obstante, el concepto de que la vida en la Tierra evolucionó a partir de un ancestro común ya había sido formulado por varios filósofos griegos,[5] y la hipótesis de que las especies se transforman continuamente fue postulada por numerosos científicos de los siglos XVIII y XIX, a los cuales Charles Darwin citó en el primer capítulo de su libro El origen de las especies.[6] Sin embargo, fue el propio Darwin, en 1859,[7] quien sintetizó un cuerpo coherente de observaciones que consolidaron el concepto de la evolución biológica en una verdadera teoría científica.[2]
    El origen de la vida, aunque atañe al estudio de los seres vivos, es un tema que no es abordado por la teoría de la evolución; pues esta última sólo se ocupa del cambio en los seres vivos, y no del origen, cambios e interacciones de las moléculas orgánicas de las que éstos proceden.[22] No se sabe mucho sobre las etapas más tempranas y previas al desarrollo de la vida, y los intentos realizados para tratar de desvelar la historia más temprana del origen de la vida generalmente se enfocan en el comportamiento de las macromoléculas, debido a que el consenso científico actual es que la compleja bioquímica que constituye la vida provino de reacciones químicas simples, si bien persisten las controversias acerca de cómo ocurrieron las mismas.[23]

    REFERENCIAS:
     Hall, B. K., Hallgrímsson, B. (2008). Strickberger's Evolution. Jones & Bartlett. pp. 762. ISBN 0763700665. http://www.jblearning.com/catalog/9780763700669/.
    -
    Sandín, M. (1997). «Teoría Sintética: Crisis y Revolución». Arbor (623-624): pp. 269-303. http://www.somosbacteriasyvirus.com/sintetica.pdf.

    martes, 22 de mayo de 2012

    ROBOTICA/REALIDAD VIRTUAL/INTELIGENCIA ARTIFICIAL/CINE 3D

    La robótica es la rama de la tecnología que se dedica al diseño, construcción, operación, disposición estructural, manufactura y aplicación de los robots La robótica combina diversas disciplinas como son: la mecánica, la electrónica, la informática, la inteligencia artificial y la ingeniería de control Otras áreas importantes en robótica son el álgebra, los autómatas programables y las máquinas de estados

    Según su cronología

    La que a continuación se presenta es la clasificación más común:
    • 1ª Generación.
    Manipuladores. Son sistemas mecánicos multifuncionales con un sencillo sistema de control, bien manual, de secuencia fija o de secuencia variable.
    • 2ª Generación.
    Robots de aprendizaje. Repiten una secuencia de movimientos que ha sido ejecutada previamente por un operador humano. El modo de hacerlo es a través de un dispositivo mecánico. El operador realiza los movimientos requeridos mientras el robot le sigue y los memoriza.
    • 3ª Generación.
    Robots con control sensorizado. El controlador es una computadora que ejecuta las órdenes de un programa y las envía al manipulador para que realice los movimientos necesarios.
    • 4ª Generación.
    Robots inteligentes. Son similares a los anteriores, pero además poseen sensores que envían información a la computadora de control sobre el estado del proceso. Esto permite una toma inteligente de decisiones y el control del proceso en tiempo real.
    REALIDAD VIRTUAL
    Realidad virtual es un ciencia basada en el empleo de ordenadores y otros dispositivos, cuyo fin es producir una apariencia de realidad que permita al usuario tener la sensación de estar presente en ella. Se consigue mediante la generación por ordenador de un conjunto de imágenes que son contempladas por el usuario a través de un casco provisto de un visor especial. Algunos equipos se completan con trajes y guantes equipados con sensores diseñados para simular la percepción de diferentes estímulos, que intensifican la sensación de realidad.
    INTELIGENCIA ARTIFICIAL
    se denomina inteligencia artificial (IA) a las inteligencias no naturales en agentes racionales no vivos.John McCarthy, acuñó el término en 1956, la definió: "Es la ciencia e ingeniería de hacer máquinas inteligentes, especialmenteprogramas de cómputo inteligentes."4
    Para explicar la definición anterior, entiéndase a un Agente inteligente que permite pensar, evaluar y actuar conforme a ciertos principios de optimización y consistencia, para satisfacer algún objetivo o finalidad. De acuerdo al concepto previo, racionalidad es más general y por ello más adecuado que inteligencia para definir la naturaleza del objetivo de esta disciplina.
    CINE 3D
    por más que el fenómeno del Cine 3D nos resulte una innovación, la inquietud de un cine que pudiese reproducir las imágenes tal cual son visualizadas por el ojo humano fue inminente. LaHistoria del cine data que, después del surgimiento de este medio (en 1895 con la primera proyección pública paga de la mano de los Hermanos Lumière), se comenzó a plantear la posibilidad de dotar a este nuevo gran espectáculo con la tercera dimensión para que se hiciera más real. Se sabía que el cerebro creaba la sensación de tridimensionalidad sumando las dos imágenes que recibía a través del ojo izquierdo y del derecho. Lo que faltaba, era crear una solución técnica que permitiera proyectar esas dos imágenes de forma separada para que el cerebro las uniera.
    REFERENCIAS
     «Definición de robótica - RAE». Consultado el 02-12-2008.
    • Gálvez Mozo, A. (2004) Posicionamientos y puestas en pantalla. Un análisis de la producción de sociabilidad en los entornos virtuales. Barcelona: UAB.
    • Turkle, S. (1997) La vida en la pantalla. La construcción de la identidad en la era de internet. Barcelona: Paidós.
    • Tirso de Andrés, Homo Cybersapiens. La Inteligencia artificial y la humana, 2002, ISBN 84-313-1982-8



    lunes, 21 de mayo de 2012

    La Celula


    es la unidad morfológica y funcional de todo ser vivo. De hecho, la célula es el elemento de menor tamaño que puede considerarse vivo.[2] De este modo, puede clasificarse a los organismos vivos según el número de células que posean: si sólo tienen una, se les denomina unicelulares (como pueden ser los protozoos o las bacterias, organismos microscópicos); si poseen más, se les llama pluricelulares.

    HISTORIA Y TEORIA CELULAR
    La historia de la biología celular ha estado ligada al desarrollo tecnológico que pudiera sustentar su estudio. De este modo, el primer acercamiento a su morfología se inicia con la popularización del microscopios rudimentarios de lentes compuestas en el siglo XVII, se suplementa con diversas técnicas histológicas para microscopía óptica en los siglos XIX y XX y alcanza un mayor nivel resolutivo mediante los estudios de microscopía electrónica, de fluorescencia y confocal, entre otros, ya en el siglo XX. El desarrollo de herramientas moleculares, basadas en el manejo de ácidos nucleicos y enzimas permitieron un análisis más exhaustivo a lo largo del siglo XX

    CARACTERISTICAS
    Las células, como sistemas termodinámicos complejos, poseen una serie de elementos estructurales y funcionales comunes que posibilitan su supervivencia; no obstante, los distintos tipos celulares presentan modificaciones de estas características comunes que permiten su especialización funcional y, por ello, la ganancia de complejidad. De este modo, las células permanecen altamente organizadas a costa de incrementar la entropía del entorno, uno de los requisitos de la vida

    TAMAÑO,FORMA Y FUNCION
    El tamaño y la forma de las células depende de sus elementos más periféricos (por ejemplo, la pared, si la hubiere) y de su andamiaje interno (es decir, el citoesqueleto).
    Respecto de su forma, las células presentan una gran variabilidad, e, incluso, algunas no la poseen bien definida o permanente. Pueden ser: fusiformes (forma de huso), estrelladas, prismáticas, aplanadas, elípticas, globosas o redondeadas, etc.
    Para la viabilidad de la célula y su correcto funcionamiento siempre se debe tener en cuenta la relación superficie-volumen

    CELULA PROCARIOTA
    Las células procariotas son pequeñas y menos complejas que las eucariotas. Contienen ribosomas pero carecen de sistemas de endomembranas (esto es, orgánulos delimitados por membranas biológicas, como puede ser el núcleo celular). Por ello poseen el material genético en el citosoL.

    ARQUEAS
    Las arqueas poseen un diámetro celular comprendido entre 0,1 y 15 μm, aunque las formas filamentosas pueden ser mayores por agregación de células. Presentan multitud de formas distintas: incluso las hay descritas cuadradas y planas. Algunas arqueas tienen flagelos y son móviles.

    BACTERIAS
    Las bacterias son organismos relativamente sencillos, de dimensiones muy reducidas, de apenas unas micras en la mayoría de los casos. Como otros procariotas, carecen de un núcleo delimitado por una membrana, aunque presentan un nucleoide, una estructura elemental que contiene una gran molécula generalmente circular de ADN.

    CELULA EUCARIOTA
    Las células eucariotas son el exponente de la complejidad celular actual. Presentan una estructura básica relativamente estable caracterizada por la presencia de distintos tipos de orgánulos intracitoplasmáticos especializados, entre los cuales destaca el núcleo, que alberga el material genético. Especialmente en los organismos pluricelulares, las células pueden alcanzar un alto grado de especialización.

    MEMBRANA PLASMATICA
    La composición de la membrana plasmática varía entre células dependiendo de la función o del tejido en la que se encuentre, pero posee elementos comunes. Está compuesta por una doble capa de fosfolípidos por proteínas unidas no covalentemente a esa bicapa, y por glúcidos unidos covalentemente a lípidos o proteínas

    CITOESQUELETO
    Las células poseen un andamiaje que permite el mantenimiento de su forma y estructura, pero más aún, este es un sistema dinámico que interactúa con el resto de componentes celulares generando un alto grado de orden interno.

    REFERENCIAS:
  • Alberts et al (2004). Biología molecular de la célula. Barcelona: Omega. ISBN 54-282-1351-8.
  • Lane, Nick (2005). Power, Sex, Suicide. Mitochondria and the Meaning of Life. Oxford University Press. ISBN 0-19-280481-2.
  • Lodish et al. (2005). Biología celular y molecular. Buenos Aires: Médica Panamericana. ISBN 950-06-1974-3.
  • Paniagua, R.; Nistal, M.; Sesma, P.; Álvarez-Uría, M.; Fraile, B.; Anadón, R. y José Sáez, F. (2002). Citología e histología vegetal y animal. McGraw-Hill Interamericana de España, S.A.U.. ISBN 84-486-0436-9.
  • Reinos de la Naturaleza

    En el ámbito de la Biología, reino es cada una de las grandes subdivisiones en que se consideran distribuidos los seres vivos  por razón de sus caracteres comunes.
    En la actualidad, reino es el segundo nivel de clasificación por debajo del dominio. La clasificación más aceptada es el sistema de los tres dominios que se presenta arriba, a la derecha
    Puesto que Archaea y Bacterias no se han subdividido, se pueden considerar tanto dominios como reinos. Este esquema fue propuesto por Woese en 1990 al notar las grandes diferencias que a nivel molecular presentan arqueas (archaea) y bacterias, a pesar de que ambos grupos están compuestos por organismos con células procariotas. El resto de los reinos comprende los organismos compuestos por células eucariotas, esto es, animales, plantas, hongos (fungi) y protistas. El reino protista comprende una colección de organismos, en su mayoría unicelulares, antes clasificados como «protozoos», «algas» de ciertos tipos y «mohos mucilaginosos».

    HISTORIA
    Históricamente, la primera organización en reinos se debe a Aristóteles (siglo IV a. C.), que diferenció todas las entidades vivas de la naturaleza en dos reinos: animal y vegetal. Linneo también distinguió estos dos reinos de seres vivos y además trató a los minerales, colocándolos en un tercer reino, Mineralia. Además, introdujo la nomenclatura binomial para referir a las especies y dividió los reinos en filos, los filos en clases, las clases en órdenes, los órdenes en familias, las familias en géneros y los géneros en especies Ernst Haeckelen 1866 fue el primero en distinguir entre organismos unicelulares (protistas) y pluricelulares (plantas y animales). Poco a poco se puso de manifiesto la importancia de la distinción entre procariotas y eucariotas y se popularizó la propuesta de Edouard Chatton de 1937.

    SISTEMA DE LOS 5 REINOS
    Robert Whittaker reconoce el reino adicional de los hongos (Fungi). El resultado fue el sistema de los 5 reinos, propuesto en 1969, que se convirtió en un estándar muy popular y que, con algunas modificaciones, aún se utiliza en muchas obras o constituye la base para nuevos sistemas multirreino. Se basa principalmente en las diferencias en materia de nutrición: sus Plantae son en su mayoría pluricelulares autótrofos, sus Animalia, pluricelulares heterótrofos, y sus Fungi, pluricelulares saprofitos. Los otros dos reinos, Protista y Monera (procariotas), incluyen organismos unicelulares o coloniales

    SISTEMAS DE LOS TRES DOMINIOS
    En los años ochent se produjo un énfasis en la filogenia, lo que llevó a la redefinición de los reinos como grupos monofiléticos, esto es, como grupos de organismos que han evolucionado a partir de un antepasado común. Los reinos Animalia, Plantae y Fungi fueron reducidos a los grupos básicos de organismos estrechamente relacionados y el resto de grupos fue trasladado al reino Protista. Sobre la base de estudios de ARN, Carl Woese dividió a los procariotas (reino Monera) en dos reinos, denominados Eubacteria y Archaebacteria. Estos dos reinos, junto con plantas, animales, hongos y protistas constituye el sistema de los seis reinos. Este sistema se han convertido en estándar en muchas obras.[1]
    Eubacteria y Archaebacteria fueron renombrados a Bacteria y Archaea, y para remarcar la profunda separación filogenética entre bacterias, arqueas y eucariotas, en 1990 Woese estableció el sistema de los tres dominios Según este sistema, el más aceptado actualmente, los seres vivos se dividen en los dominios Bacteria, Archaea y Eukarya, y a su vez Eukarya se divide en los reinos Protista, Fungi, Plantae y Animalia.

    OTRAS PROPUESTAS
    Desde entonces, se han propuesto multitud de nuevos reinos eucariotas, pero la mayoría fueron rápidamente invalidados, reclasificados a nivel de filos o clases o abandonados. El único que todavía es usado por algunos autores es el reino Chromista propuesto por Cavalier-Smith[8] [9] para abarcar organismos tales como algas pardas, algas verde-amarillas, algas doradas, diatomeas, oomicetos y otros relacionados. Esta propuesta no ha recibido mucha atención, aunque la cuestión de las relaciones y división en grupos de los seres vivos sigue siendo todavía materia de discusión.

    REFERENCIAS
    1. a b c Woese, C.R.; Balch, W.E.; Magrum, L.J.; Fox, G.E. y Wolfe, R.S. (1977). «An ancient divergence among the bacteria». Journal of Molecular Evolution 9: pp. 305–311.
    2. a b c Woese, C.R.; Kandler, O. y Wheelis, M.L. (1990). «Towards a Natural System of Organisms: Proposal for the domains Archaea, Bacteria, and Eucarya». Proc. Nati. Acad. Sci. USA 87 (12): pp. 4576-4579. doi:doi:10.1073/pnas.87.12.4576. http://www.pnas.org/content/87/12/4576.full.pdf+html.
    3. Ciccarelli FD, Doerks T, von Mering C, Creevey CJ, Snel B, Bork P (2006). «Toward automatic reconstruction of a highly resolved tree of life». Science 311 (5765): pp. 1283-7. PMID 165139821.
    4. a b Linneo, C. (1735). Systema Naturae, sive regna tria naturae, systematics proposita per classes, ordines, genera & species. Leiden: Theodorum Haak. pp. 11.
    5. a b Haeckel, E. (1866). Generelle Morphologie der Organismen. Berlín: Reimer.
    6. a b Chatton, E. (1937). Titres et travaux scientifiques (1906–1937). Sète, Francia: E. Sottano.
    7. a b Whittaker, R.H. (1969). «New concepts of kingdoms of organisms». Science 163: pp. 150–160.
    8. a b Cavalier-Smith, T. (1998). «A revised six-kingdom system of life». Biological Reviews of the Cambridge Philosophical Society (Cambridge University Press) 73: pp. 203-266. doi:doi:10.1017/S0006323198005167. http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=685.
    9. a b Cavalier-Smith, T. (2004). «Only six kingdoms of life». Proc. R. Soc. Lond. Serie B 271: pp. 1251-1262. http://www.cladocera.de/protozoa/cavalier-smith_2004_prs.pdf.
    10. Copeland, H.F. (1956). The Classification of Lower Organisms. Palo Alto: Pacific Books.

    Los Animales

    Se caracterizan por su capacidad para la locomoción, por la ausencia de clorofila y de pared en sus células, y por su desarrollo embrionario, que atraviesa una fase de blástula y determina un plan corporal fijo
    CARACTERISTICA GENERAL
    La movilidad es la característica más llamativa de los organismos de este reino, pero no es exclusiva del grupo, lo que da lugar a que sean designados a menudo como animales ciertos organismos que pertenecen al reino Protista
    FUNCIONES ESCENCIALES
    Los animales llevan a cabo las siguientes funciones esenciales: alimentación, respiración, circulación, excreción, respuesta, movimiento y reproducción:
    • Alimentación: La mayoría de los animales no pueden absorber comida; la ingieren. Los animales han evolucionado de diversas formas para alimentarse. Los herbívoros comen plantas, los carnívoros comen otros animales; y los omnívoros se alimentan tanto de plantas como de animales. Los detritívoros comen material vegetal y animal en descomposición. Los comedores por filtración son animales acuáticos que cuelan minúsculos organismos que flotan en el agua. Los animales también forman relaciones simbióticas, en las que dos especies viven en estrecha asociación mutua. Por ejemplo un parásito es un tipo de simbionte que vive dentro o sobre otro organismo, el huésped. El parásito se alimenta del huésped y lo daña.[1]
    • Respiración: no importa si viven en el agua o en la tierra, todos los animales respiran; esto significa que pueden tomar oxígeno y despedir dióxido de carbono. Gracias a sus cuerpos muy simples y de delgadas paredes, algunos animales utilizan la difusión de estas sustancias a través de la piel. Sin embargo, la mayoría de los animales han evolucionado complejos tejidos y sistemas orgánicos para la respiración.[1]
    • Circulación: Muchos animales acuáticos pequeños, como algunos gusanos, utilizan solo la difusión para transportar oxígeno y moléculas de nutrientes a todas sus células, y recoger de ellas los productos de desecho. La difusión basta porque estos animales apenas tienen un espesor de unas cuantas células. Sin embargo, los animales más grandes poseen algún tipo de sistema circulatorio para desplazar sustancias por el interior de sus cuerpos.[1]
    • Excreción: un producto de desecho primario de las células es el amoniaco, sustancia venenosa que contiene nitrógeno. La acumulación de amoniaco y otros productos de desecho podrían matar a un animal. La mayoría de los animales poseen un sistema excretor que bien elimina amoniaco o bien lo transforma en una sustancia menos tóxica que se elimina del cuerpo. Gracias a que eliminan los desechos metabólicos, los sistemas excretores ayudan a mantener la homeóstasis. Los sistemas excretores varían, desde células que bombean agua fuera del cuerpo hasta órganos complejos como riñones.
    • Respuesta: Los animales usan células especializadas, llamadas células nerviosas, para responder a los sucesos de su medio ambiente. En la mayoría de los animales, las células nerviosas están conectadas entre sí para formar un sistema nervioso. Algunas células llamadas receptores, responden a sonidos, luz y otros estímulos externos. Otras células nerviosas procesan información y determinan la respuesta del animal. La organización de las células nerviosas dentro del cuerpo cambia dramáticamente de un fílum a otro.
    • Movimiento: Algunos animales adultos permanecen fijos en un sitio. Aunque muchos tienen movilidad. Sin embargo tanto los fijos como los más veloces normalmente poseen músculos o tejidos musculares que se acortan para generar fuerza. La contracción muscular permite que los animales movibles se desplacen, a menudo en combinación con una estructura llamada esqueleto. Los músculos también ayudan a los animales, aún los más sedentarios, a comer y bombear agua y otros líquidos fuera del cuerpo.[1]
    • Reproducción: la mayoría de los animales se reproducen sexualmente mediante la producción de gametos haploides. La reproducción sexual ayuda a crear y mantener la diversidad genética de una población. Por consiguiente, ayuda a mejorar la capacidad de una especie para evolucionar con los cambios del medio ambiente. Muchos invertebrados también pueden reproducirse asexualmente. La reproducción asexual da origen a descendiente genéticamente idénticos a los progenitores. Esta forma de reproducción permite que los animales aumenten rápidamente en cantidad

    REFERENCIAS:
    1. a b c d e f g Miller, Kenneth (2004) (en Español). Biología. Massachusetts: Prentice Hall. pp. 658-659. ISBN 0-13-115538-5.
    2. el número des especies es aproximado y varía según las fuentes; los datos de esta tabla están basados en Brusca & Brusca, si no se indica lo contrario
    3. a b Brusca, R. C. & Brusca, G. J., 2005. Invertebrados, 2ª edición. McGraw-Hill-Interamericana, Madrid (etc.), XXVI+1005 pp. ISBN 0-87893-097-3.
    4. a b c d e Chapman, A. D., 2009. Numbers of Living Species in Australia and the World, 2nd edition. Australian Biodiversity Information Services ISBN (online) 9780642568618
    5. Altaba, C. R. et al., 1991. Invertebrats no artròpodes. Història Natural dels Països Catalans, 8. Enciclopèdia Catalana, S. A., Barcelona, 598 pp. ISBN 84-7739-177-7
    BIBLIOGRAFIA

  • Conway, Morris, S. 1993. The fossil record and the early evolution of the Metazoa. Nature 361:219–225. An important summary correlating fossil and molecular evidence.
  • Hickman, C. P., Ober, W. C. & Garrison, C. W. 2006. Principios integrales de zoología, 13ª edición. McGraw-Hill-Interamericana, Madrid (etc.), XVIII+1022 pp. ISBN 84-481-4528-3.
  • Storer, Tracy. General Zoology. 6th edition. MC. Graw Hill Book Company, Inc.
  • El universo

    Es la totalidad del espacio y del tiempo, de todas las formas de la materia, la energía y el impulso, las leyes y constantes físicas que las gobiernan. Sin embargo, el término universo puede ser utilizado en sentidos contextuales ligeramente diferentes, para referirse a conceptos como el cosmos, el mundo o la naturaleza.[1]
    PORCION OBSERVABLE
    Los cosmólogos teóricos y astrofísicos utilizan de manera diferente el término universo, designando bien el sistema completo o únicamente una parte de él.[4] Según el convenio de los cosmólogos, el término universo se refiere frecuentemente a la parte finita del espacio-tiempo que es directamente observable utilizando telescopios, otros detectores, y métodos físicos, teóricos y empíricos para estudiar los componentes básicos del universo y sus interacciones. Los físicos cosmólogos asumen que la parte observable del espacio comóvil (también llamado nuestro universo) corresponde a una parte de un modelo del espacio entero y normalmente no es el espacio entero. Frecuentemente se utiliza el término el universo como ambas: la parte observable del espacio-tiempo, o el espacio-tiempo entero.
    TEORIA SOBRE EL BIG BANG
    El hecho de que el universo esté en expansión se deriva de las observaciones del corrimiento al rojo realizadas en la década de 1920 y que se cuantifican por la ley de Hubble. Dichas observaciones son la predicción experimental del modelo de Friedmann-Robertson-Walker, que es una solución de las ecuaciones de campo de Einstein de la relatividad general, que predicen el inicio del universo mediante un big bang.
    El "corrimiento al rojo" es un fenómeno observado por los astrónomos, que muestra una relación directa entre la distancia de un objeto remoto (como una galaxia) y la velocidad con la que éste se aleja. Si esta expansión ha sido continua a lo largo de la vida del universo, entonces en el pasado estos objetos distantes que siguen alejándose tuvieron que estar una vez juntos. Esta idea da pie a la teoría del Big Bang; el modelo dominante en la cosmología actual.
    Durante la era más temprana del Big Bang, se cree que el universo era un caliente y denso plasma. Según avanzó la expansión, la temperatura decreció hasta el punto en que se pudieron formar los átomos. En aquella época, la energía de fondo se desacopló de la materia y fue libre de viajar a través del espacio. La energía remanente continuó enfriándose al expandirse el universo y hoy forma el fondo cósmico de microondas. Esta radiación de fondo es remarcablemente uniforme en todas direcciones, circunstancia que los cosmólogos han intentado explicar como reflejo de un periodo temprano de inflación cósmica después del Big Bang.
    El examen de las pequeñas variaciones en el fondo de radiación de microondas proporciona información sobre la naturaleza del universo, incluyendo la edad y composición. La edad del universo desde el Big Bang, de acuerdo a la información actual proporcionada por el WMAP de la NASA, se estima en unos 13.700 millones de años, con un margen de error de un 1% (137 millones de años). Otros métodos de estimación ofrecen diferentes rangos de edad, desde 11.000 millones a 20.000 millones.

    TAMAÑO
    Muy poco se conoce con certeza sobre el tamaño del universo. Puede tener una longitud de billones de años luz o incluso tener un tamaño infinito. Un artículo de 2003[11] dice establecer una cota inferior de 24 gigaparsecs (78.000 millones de años luz) para el tamaño del universo, pero no hay ninguna razón para creer que esta cota está de alguna manera muy ajustada (Véase forma del Universo). pero hay distintas tesis del tamaño; una de ellas es que hay varios universos, otro es que el universo es infinito
    FORMA
    Si el universo es espacialmente plano, se desconoce si las reglas de la geometría Euclidiana serán válidas a mayor escala. Actualmente muchos cosmólogos creen que el Universo observable está muy cerca de ser espacialmente plano, con arrugas locales donde los objetos masivos distorsionan el espacio-tiempo, de la misma forma que la superficie de un lago es casi plana. Esta opinión fue reforzada por los últimos datos del WMAP, mirando hacia las "oscilaciones acústicas" de las variaciones de temperatura en la radiación de fondo de microondas.[13]
    Por otra parte, se desconoce si el universo es conexo. El universo no tiene cotas espaciales de acuerdo al modelo estándar del Big Bang, pero sin embargo debe ser espacialmente finito (compacto).
    COLOR
    Históricamente se ha creído que el Universo es de color negro, pues es lo que observamos al momento de mirar al cielo en las noches despejadas. En 2002, sin embargo, los astrónomos Karl Glazebrook e Ivan Baldry afirmaron en un artículo científico que el universo en realidad es de un color que decidieron llamar café cortado cósmico.[14]



    REFERENCIAS:
    http://es.wikipedia.org/wiki/Universo
    1. Cfr. Universal (metafísica)
    2. Lineweaver, Charles; Tamara M. Davis (2005). Misconceptions about the Big Bang. Scientific American. Enlace verificado 31 de marzo de 2008.
    3. «Primeras imágenes de la materia oscura». Consultado el 20 de diciembre de 2010.
    4. JSTOR: Un Universo o muchos?
    5. Luminet, Jean-Pierre; Boudewijn F. Roukema (1999). «Topology of the Universe: Theory and Observations». Proceedings de la Escuala de Cosmología de Cargese (Córcega) Agosto de 1998. http://arxiv.org/abs/astro-ph/9901364. Consultado el 05-01-2007.
    6. Luminet, Jean-Pierre; J. Weeks, A. Riazuelo, R. Lehoucq, J.-P. Uzan (2003). «Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background». Nature 425: pp. 593. http://arxiv.org/abs/astro-ph/0310253. Consultado el 09-01-2007.
    7. Brookhaven National Laboratory (ed.): «Heavy Ion Collisions».
    8. Thomas Ludlam, Larry McLerran (Octubre de 2003). Physics Today (ed.): «What Have We Learned From the Relativistic Heavy Ion Collider?». Consultado el 28 de febrero de 2007.
    9. Ken Tan (15 de enero de 2007). space.com (ed.): «New 'Hobbit' Galaxies Discovered Around Milky Way». Consultado el 1 de marzo de 2007.
    10. The Uppsala Astronomical Observatory (ed.): «Dwarf Spheroidal Galaxies». Consultado el 1 de marzo de 2007.